

BFMS 多机调度系统产品手册

(公开文件)

上海宾通智能科技有限公司

更新日期: 2020年10月

上海宾通 BITO ROBOTICS

【温馨提示】

产品使用前,务必请仔细阅读产品说明书。

若文档描述与实际产品不符,请及时反馈。

禁止在韩信运行期间修改时区,一旦修改时区,必须重启韩信。

因为录屏或其他与产品无关的操作将硬盘占满之后,会导致韩信 UI 界面显示异常<mark>,因</mark> 此,请及时关注硬盘使用情况。

同一网段仅允许使用一台 BFMS。

此版本不支持多楼层调度。

BIT O

上海宾通 BITO ROBOTICS

目录	3
1 产品简介	. 6
1.1 产品介绍	. 6
1. 2 主要功能	. 6
1.2.1 路网设计	. 6
1.2.2 任务管理	. 6
1.2.3 机器人管理	6
1.2.4 故障管理	. 6
1. 2. 5 实时监控	. 6
1.2.6 交通管制	. 7
1.3 使用环境	. 7
1.4 目标客户	. 7
2 功能介绍	. 7
2.1 登录登出	. 7
2.1.1 用户权限	. 7
2.1.2 登录	7
2.1.3 登出	8
2.1.4 更新密码	. 8
2. 2 多语言	.9
2.3 韩信状态	. 9
2. 4 充电模式	10
2.4.1 定义	10
2.4.2 切换机制	10
2.4.3 手动下发充电任务的规则	10
3 路网设计编辑器	11
3.1 顶部工具栏	11
3. 1. 1 撤销/恢复	11
3.1.2 二维码地图	12
3.1.3 雷达地图	13
3.1.4 路网地图	13

BITO BOTICS

上海宾通 BITO ROBOTICS

3.1.5	贝 塞 尔 模 式	16
3.1.6	选择	16
3.1.7	节点	17
3.1.8	边	17
3.1.9	边上加点	18
3.1.10) 添加节点	18
3. 1. 11	示教节点	19
3. 1. 12	2 对齐	20
3.2 左	侧楼层+元件库(此版本仅 UI,实际功能不支持)	21
3.2.1	楼层(此版本不支持多楼层调度)	21
3.2.2	元件库	21
3.3 画:	布	23
3.3.1	楼层	23
3.3.2	居中画布	23
3.3.3	居中路网	23
3.3.4	路网	23
3.4 右	侧编辑栏	27
3.4.1	编辑节点属性	27
3.4.2	编辑逻辑库位列表	27
3.4.3	编辑线段属性	28
3.4.4	平移路网	29
3.4.5	旋转路网	29
3.4.6	删除当前楼层中的所有逻辑库位(除电梯)	29
4 任务管	理	29
4.1 新	建任务	29
4.1.1	新建普通任务的规则	30
4.1.2	新建充电任务的规则	30
4.2 重	复	31
4.3 取	消任务	32
4.4 任:	务状态	32
4.5 任	务动作	33

上海宾通 BITO ROBOTICS

5	机	,器ノ	人管理	
:	5.1	机	l 器 人 状 态	34
	5.	1.1	离线	
	5.	1.2	2 在线	
;	5.2	伺	〕服	35
	5.3	定	日位	
;	5.4	操	峰作	37
	5.	4.1	连接	37
	5.	4.2	9 断开	37
	5.	4.3	3 全部连接	37
	5.	4.4	全部断开	37
	5.	4.5	5 暂停	37
	5.	4.6	,恢复	37
	5.	4.7	/ 全部继续	37
	5.	4.8	3 全部暂停	37
6	故	障礙	马	
7	场	域乡	实况	
	7.1	路	予网名称	38
	7.2	居	e 中 画 布 / 路 网 / 机 器 人	
	7.3	展	┌ │ 隐 藏 计 划 路 径	
	7.4	贝]塞尔曲线/直线	
	7.5	隐	9藏/显示逻辑点	39
8	配	,置		39
	8.1	主	E 题 &LOGO	
	8.	1.1	切换主题	
	8.	1.2	2 切换 L0G0	

1 产品简介

1.1 产品介绍

"韩信"简称"BFMS",是上海宾通智能科技有限公司(简称为 BIT0)的调度系统的别称,主要负责 给各机器人规划路径及下发任务,实现各机器人之间协调合作,使整个工厂中移动机器人的任务执行 效率最优化。

韩信调度系统可调度多类型、多数量的移动机器人,在复杂的业务场景下,高效协作完成多种类的复杂任务,实现整个工厂整体作业的效率优化与效益提升。

韩信可对接仓库已有系统,如 WMS(仓库管理系统)、MES(制造执行系统)、ERP(企业资源计划系统)等,也可对接工业环境的物联网系统设备,如 PLC、呼叫盒、光电开关。

韩信作为 BITO 的调度系统产品,致力于提供快速、专业、完整的工厂调度解决方案。

1.2 主要功能

1.2.1 路网设计

- 无缝衔接 SLAM 定位导航技术,快速建图并导入韩信。
- 灵活修改路网,高效配合机器人的行径轨迹。

1.2.2 任务管理

- 任务下发效率最优:将任务分配给最合适的机器人,实现全局任务完成的效率最优。
- 任务列表管理:在韩信端可以对单条任务实现增加任务、取消任务、查看任务等灵活操作。

1.2.3 机器人管理

- 机器人列表管理:在韩信端实现对机器人的连接、断开、停止、启动等快捷操作。
- 机器人状态监控:可对每台机器人的上线状态、故障情况的情况进行实时监控。
- 无人化的自动充电调度系统,满足工厂 24 小时运转。

1.2.4 故障管理

• 可实时监控机器人是否故障,并提示故障原因和处理建议和。

1.2.5 实时监控

● 可在路网中实时监控机器人的行动轨迹,正在执行的任务状态。

BITO ROBOTICS

1.2.6 交通管制

分多车调度时,分配合适的路径给各自机器人。对多机器人在同一空间下进行协同约束,保证机器人 能安全、高效地执行各自任务。

1.3 使用环境

韩信的硬件载体建议选用工控机:

质量可靠,经过工业产品认证,在复杂的工厂环境中具有较强的适应性

CPU: Intel® Core™ i3-7100U CPU @ 2.40GHz × 4

内存: 16 GB

显卡: Intel® HD Graphics 620(Kaby Lake GT2)

硬盘: 126 GB 及以上

操作系统: Ubuntu 16.04

注意:硬件载体需根据实际项目情况调整。

1.4 目标客户

BFMS2.2版本支持多台车在复杂路网上运行。

2 功能介绍

2.1 登录登出

2.1.1 用户权限

01. 管理员权限:开放所有页面和功能,通过登录界面的"登录"按钮进入。02. 游客权限: 仅查看部分页面和功能,通过登录界面的"游客登录"按钮进入。

2.1.2 登录

Ŀ	BITO ROBOTICS
Si	ign in
* 用户名	
admin	
* 密码	
	游客登录

2.1.3 登出

点击界面右上角的账户名,然后单击下拉中的"注销"即可登出。

韩信状态	充电模式 纯手动	× 🕺 •	🖲 admin 🕶
			修改密码 注销
	居中画布	居中路网	居中机器人

2.1.4 更新密码

点击界面右上角的账户名,然后单击下拉中的"修改密码"即可打开更新密码的弹框。

BITO ROBOTICS

map_		u 🛶		· · ·
修改密码			Second a	×
用户				
admin				~
* 原密码				
				0
* 新密码				
* 确认密码				
			取消	确定

原密码:当前用户当前正使用的密码,不能为空

新密码:不能为空,长度为 6[~]20 位字符,且必须与"确认密码"中的值保持一致确认密码:不能为空,长度为 6[~]20 位字符,且必须与"新密码"中的值保持一致

2.2 多语言

韩信系统共支持3种语言:英语、简体中文、繁体中文。默认为英语。

韩信状态 ⑦ 充电模式 纯手动	√ 🖈 ▼	ⓐ admin •
	English 中文(简)	÷
展中	中文(繁)	居中机器人

2.3 韩信状态

开启时:开关颜色为绿色,可以使用调度系统。

【注意: BFMS2.2 必须先至设计界面, 绘制并加载一张含节点、边、逻辑库位的路网 至监控界面, 才可以开启 BFMS。】

关闭时:开关颜色为灰色,关闭 BFMS 后,将无法继续使用调度系统,正在执行的任务将被中断,等待中的任务将保留。

÷

2.4.1 定义

01. 纯手动充电模式: 需用户手动添加充电任务, 手动结束充电任务。

纯自动

充电模式	添加充电任务		中断充电任务	
	人工 (Web)	自动	人工 (Web)	自动
纯手动充电模式	~	×	~	×
纯自动充电模式	×	~	×	\checkmark

02. 纯自动充电模式: 自动根据条件添加充电任务和结束任务。

2.4.2 切换机制

只能在韩信状态是开启的情况下切换充电模式。

2.4.3 手动下发充电任务的规则

01. 下发任务的方式:

- 1) 监控页面, 右击路网中的节点, 弹出下发任务的弹框, 填写相应信息点击确定即可 下发。其中,充电桩节点仅能下发充电任务,其它类型的节点能下发除充电任务以 外的各种任务。
- 2) 任务页面, 通过"新建任务"的按钮打开下发任务的弹框, 填写相应信息点击确定 即可下发。
- 02. 下发任务的规则:

- 1) 纯自动充电模式下, 不能手动添加充电任务。
- 2) 充电节点只能下发充电任务, 非充电节点不能下发充电任务。
- 3) 充电任务必须指定预分配机器人。
- 4) 充电任务的起点(start) 和终点(goal) 必须一致。
- 5) 充电任务的起点动作(start action) 必须是 blank。
- 6)韩信自动下发的充电任务优先级默认最高。手动添加充电任务时,优先级可自选, 默认值为最高优先级。
- 7) 下发充电任务时, 充电任务的重复次数只能为 1。
- 8)未执行任务数量限制最多 2000条,超过 2000条的任务将新建失败。(举例:若任务列表中已有未执行任务 1999条,新建 3条任务,3条任务均新建失败)
- 9)下发充电任务前,BFMS系统要先自动检测目标逻辑库位(goal)的充电桩是否已 经被分配充电任务,如果已被分配,不允许继续下发该充电任务。
- 10)当预分配充电桩功能开启时,配置文件中需要为充电桩配置可允许的机器人,下 发充电任务时,机器人只能去被分配的指定充电桩充电(任意充电模式,注意可多 机器人匹配多充电桩)。
- 11) 纯手动模式下, 充电任务可通过点击取消任务按钮手动取消。

3.1.1 撤销/恢复

快捷键: Ctrl + Z (撤销)、Ctrl + Y (恢复)

在设计路网的过程中,可以被撤销和恢复的操作如下:

- 01. 添加节点
- 02. 删除节点
- 03. 编辑节点
- 04. 拖拽节点
- 05. 添加线段
- 06. 删除线段
- 07. 编辑线段
- 08. 拖拽线段
- 09. 添加逻辑库位
- 10. 删除逻辑库位
- 11. 编辑逻辑库位
- 12. 平移路网
- 13. 旋转路网

在执行以下操作后,无法执行撤消恢复:

- 01. 切换路网
- 02. 切换楼层
- 03. 切换地址栏

3.1.2 二维码地图

01. 点击二维码下拉,选中某个二维码地图,路网中会显示当前二维码地图数据,且 当刷新界面或离开设计界面后再重新返回该界面,二维码下拉中默认选中上次打开过 的二维码地图,路网中默认绘制该二维码地图数据。

02. 导入当前选中的二维码地图后,监控界面会显示被导入的二维码地图数据。

3.1.3 雷达地图

雷达地图 ~	\bigcirc
雷达地图	导入

01. 点击雷达地图下拉,选中某个雷达地图,路网中会显示当前雷达地图,且当刷新 界面或离开设计界面后再重新返回该界面,雷达地图下拉中默认选中上次打开过的雷 达地图,默认以该雷达地图为背景绘制路网。

02. 导入当前选中的雷达地图后,监控界面会显示被导入的雷达地图。

01. 上传

导入			×
	下载路网模板		
	将文件拖至此处,或点击上传		
	仅支持扩展名.xlsx 的文件		
文件名称			
		取消	确定

- 1) 可以先"下载路网模板",然后填写路网数据至文件中
- 2) 上传编辑好的*. xlsx 格式的路网文件
- 3)为即将导入的路网起个名字,名称格式要求:

不能为空

② 只允许输入字母、数字、下划线,字符长度范围为 3~18 位

③ 不能与已有路网名称重复

02. 下载

会下载当前被选中的路网, 文件格式为*.xlsx

03. 新建

提示	3
请输入路网名称(3 ~ 18 位字符)	
1	
	取当

为即将新建的路网起个名称,点击"确定",即可成功创建一个空白路网。

路网名称格式要求:

- 不能为空
- ② 只允许输入字母、数字、下划线,字符长度范围为 3[~]18 位
- ③ 不能与已有路网名称重复

04. 选择路网地图

选择某个路网, 画布中会绘制相应的路网数据。同时, 用户在之前路网中的所有操作 将无法再撤销恢复。

05. 加载

上海宾通 BITO ROBOTICS

BITO

	路网连通	通性检测	
区块序号	节点数	楼层	操作
0	31	1,3	查看
1	1	1	查看
2	1	3	查看

加载当前选中的路网至监控界面,加载前会先检测路网的连通性。如果路网中存在多个区块,需要弹出如上图所示弹框。

- 1) 查看: 查看路网区块中的节点, 画布中会高亮显示这些节点。
- 2)确认,继续加载:不论路网是否完全连通,都可以点击该按钮,加载成功后可在监 控界面看到该路网。

如果路网是完全连通的,则不显示如上弹框,而是直接加载路网至监控界面。

06. 删除

从数据库中删除当前路网的数据。

07. 保存

保存当前路网至数据库中(目前 BFMS2.2 的路网是实时保存的)。

08. 另存为

提示	0
请输入路网名称(3~18位字符)	

另存当前选中的路网为新路网,只需要起个路网名称,然后点击"确定"即可。

路网名称格式要求:

- 不能为空
- ② 只允许输入字母、数字、下划线,字符长度范围为 3[~]18 位
- ③ 不能与已有路网名称重复

3.1.5 贝塞尔模式

该模式默认不开启。用户手动开启后,路网中绘制线段时,线段要遵循贝塞尔规则。

3.1.6 选择

选择模式下,用户可以在画布中进行以下操作:

- 01. 左击选中节点
- 02. Ctrl + 左击节点 = 多选节点
- 03. 拖拽节点
- 04. 画布空白处左击鼠标, 可取消节点或线段的选中状态
- 05. 画布空白处右击鼠标不松开,拖动指针可移动画布
- 06. 画布空白处左击鼠标不松开,拖动指针可框选节点
- 07. 右击节点生成逻辑库位或删除节点
- 08. 左击选中线段,选中后还可以拖拽线段两端
- 09. Ctrl + 左击线段 = 多选线段
- 10. 右击线段可切换双向边或删除边
- 11. 均匀拆线:双击线段弹出均匀拆线的弹框,输入分段数 n(默认为 2)后,可将线 段拆成 n 段并在拆点处共生成 n-1 个节点

3.1.7 节点

节点模式下,添加节点的步骤总共为2步,第一次左击画布空白处是用来确定新节点的坐标,生成一个带灰色箭头的节点;第二次左击画布空白处是用来确定节点的角度,带灰色箭头的节点会消失,生成一个带黑色箭头的节点。另外,如果第二次操作不是 左击,而是右击,则会删除带灰色箭头的节点。

节点规则: 节点之间的距离必须等于 0 或大于 0.1 米, 且当等于 0 时, 节点之间的角度差必须大于 0.2°。

该模式下,用户可以在画布中进行以下操作:

01. 画布空白处左击鼠标,可取消节点或线段的选中状态
02. 画布空白处右击鼠标不松开,拖动指针可移动画布
03. 在画布空白处单击,可添加普通类型节点
04. 在节点上单击,可在该节点上面添加旋转点
05. 右击节点生成逻辑库位或删除节点
06. 左击选中线段,选中后还可以拖拽线段两端
07. Ctrl + 左击线段 = 多选线段
08. 右击线段可切换双向边或删除边

3.1.8 边

フシン

边模式下,添加边的步骤总共为2步,第一次左击某个节点作为线段的起点;第二次 左击某个节点作为线段的终点。另外,如果第二次操作不是左击,而是右击,则会删 除这条没有终点的线段。

边的规则:两个节点之间至多只能连接2条方向相反的线段。

该模式下,用户可以在画布中进行以下操作:

01. 画布空白处左击鼠标, 可取消节点或线段的选中状态

02. 画布空白处右击鼠标不松开,拖动指针可移动画布
03. 左击选中线段,选中后还可以拖拽线段两端
04. Ctrl + 左击线段 = 多选线段
05. 右击线段可切换双向边或删除边

3.1.9 边上加点

边上加点模式下,添加边上节点的步骤总共为2步,第一次左击某条线段是用来确定 新节点的坐标,生成一个带灰色箭头的节点;第二次左击某条线段是用来确定节点的 角度是朝向线段的正方向还是反方向,然后带灰色箭头的节点会消失,生成一个带黑 色箭头的节点,同时,线段从该节点处被拆分成2段。另外,如果第二次操作不是左 击,而是右击,则会删除带灰色箭头的节点。

边上加点的规则:同节点规则,同时,只能在单向边上面进行边上加点操作,双向边 上不可以。

该模式下,用户可以在画布中进行以下操作:

01. 画布空白处左击鼠标,可取消节点或线段的选中状态
02. 画布空白处右击鼠标不松开,拖动指针可移动画布
03. 单击线段,线上加点
04. 右击线段可切换双向边或删除边

3.1.10 添加节点

输入 X、Y、 θ 后回车或者使鼠标从输入框中失焦,即可完成添加,且被添加的新节点 位于画布中的视觉中心。

X: 节点横坐标, 范围 [-9999, 9999]

Y: 节点纵坐标, 范围 [-9999, 9999]

θ:节点角度,范围 [-180°, 180°]

3.1.11 示教节点

示教节点是用户在实际场地中开着机器人,在指定位置停留机器人,并上报机器人当前位姿信息给单机系统,单机系统录入节点后生成的数据。示教完成后,由单机系统 上传单个或批量节点至 BFMS。

1	(±)	Toaunap_	Cr L			w.	T			×
韍	添加	山 示教节点								×
	#	上传时间		名称		节点个数		操作		
	1	2020-08-14 1	0:30:49	lidar3		3		添加	删除	
					< 1	>				
								添加所有	删除所有	

01. 添加

会将此行中的示教节点添加至画布中,添加前会对这些节点数据进行规则校验:如, 这些示教节点之间的距离是否符合节点规则,以及这些示教节点跟当前画布中已有的 节点之间是否也符合节点规则。

如何全部符合规则,则全部成功添加至画布中;如果部分符合,则只成功添加部分符合规则的节点,过滤掉不符合规则的节点;如果统统不符合规则,则一个都不添加。

02. 删除

从数据库中删除当前行的示教数据。

03. 添加所有

将数据库中的所有示教节点统统添加到画布中。同样地,添加前要做规则校验,同"添加"功能中说的校验规则。

04. 删除所有

输出数据库中的所有示教节点数据。

3.1.12 对齐

01. 左对齐

以选中的节点中横向坐标值最小的节点为左边界,横移其它所有被选中的节点至此边界。移动过程中,依旧需要校验节点左移后是否符合节点规则。

如果符合,则横移,如果不符合,则不移动,同时提示用户失败原因。

02. 左右居中

以选中的节点中横向坐标值最小的节点为左边界,以横向坐标值最大的节点为右边界, 求出最大最小值的中间值,然后将所有节点横移至该中间位置。移动过程中,依旧需 要校验节点左移后是否符合节点规则。

如果符合,则横移,如果不符合,则不移动,同时提示用户失败原因。

03. 右对齐

以选中的节点中横向坐标值最大的节点为右边界,横移其它所有被选中的节点至此边 界。移动过程中,依旧需要校验节点左移后是否符合节点规则。

如果符合,则横移,如果不符合,则不移动,同时提示用户失败原因。

04. 顶部对齐

以选中的节点中纵向坐标值最大的节点为上边界,纵移其它所有被选中的节点至此边 界。移动过程中,依旧需要校验节点左移后是否符合节点规则。

如果符合,则纵移,如果不符合,则不移动,同时提示用户失败原因。

05. 上下居中

以选中的节点中纵向坐标值最小的节点为下边界,以纵向坐标值最大的节点为上边界, 求出最大最小值的中间值,然后将所有节点纵移至该中间位置。移动过程中,依旧需 要校验节点左移后是否符合节点规则。

如果符合,则纵移,如果不符合,则不移动,同时提示用户失败原因。

06. 底部对齐

以选中的节点中纵向坐标值最小的节点为下边界,纵移其它所有被选中的节点至此边 界。移动过程中,依旧需要校验节点左移后是否符合节点规则。

如果符合,则纵移,如果不符合,则不移动,同时提示用户失败原因。

3.2 左侧楼层+元件库(此版本仅 UI, 实际功能不支持)

3.2.1 楼层(此版本不支持多楼层调度)

楼周		
+)	
F	1	
۶r	2	Û
Ŀ	3	Î

01. 单击楼层名可在画布中打开或激活该楼层的路网

02. 双击楼层名称可修改楼层名

03. 楼层范围为[-3, 0)(0, 10]之间的整数

04.1 楼的楼名层名称不可编辑

05. 楼层名称不可重复

06. 点击删除的图标按钮, 即可删除该楼层及楼层中的所有路网数据

3.2.2 元件库

元件库	
标准 ~	
8-12	

- 01. 普通节点
- 1) 绘制步骤:
- 2)拖动普通节点至画布中合适的位置,放开鼠标,节点落位到画布中,且此时的节点带一个灰色的箭头。旋转鼠标指针,确认好角度后单击画布空白处,会删除灰色箭头,并生成一个黑色箭头。
- 3) 至此, 绘制普通节点成功。
- 02. 料架
- 1) 绘制步骤:

拖动料架至画布中合适的位置,放开鼠标,料架落位到画布中,且此时的料架带一个 灰色的箭头。旋转鼠标指针,确认好角度后单击画布空白处,会删除灰色箭头,并生 成一个黑色箭头。

由于料架至少要有一个逻辑库位,所以接着会弹出添加逻辑库位的弹框。输入逻辑库 位名称和 Z 值(Z 指高度)后,点击"添加",即可成功添加逻辑库位至此料架上。

至此, 绘制料架成功。

03. 充电桩

1) 绘制步骤:

拖动充电桩至画布中合适的位置,放开鼠标,充电桩落位到画布中,且此时的充电桩 带一个灰色的箭头。旋转鼠标指针,确认好角度后单击画布空白处,会删除灰色箭头, 并生成一个黑色箭头。

由于充电桩至少要有一个逻辑库位,所以接着会弹出添加逻辑库位的弹框。输入逻辑 库位名称和 Z 值后,点击"添加",即可成功添加逻辑库位至此充电桩上。

至此, 绘制充电桩成功。

04. 电梯(此版本不支持多楼层调度)

1) 绘制步骤:

拖动电梯至画布中合适的位置,放开鼠标,电梯落位到画布中,且此时的电梯带一个 灰色的箭头。旋转鼠标指针,确认好角度后单击画布空白处,会删除灰色箭头,并生 成一个黑色箭头。

同时,会自动生成一个默认的逻辑库位"EV01",表示电梯。

至此, 绘制电梯成功。

2) 电梯规则:

- 只能在1楼添加电梯节点,且只能添加一个电梯节点,添加完成后,其它楼层 中能在同样的位置看到一个同样的电梯节点。
- ② 只能在1楼修改电梯节点的角度。
- ③ 当全部楼层的电梯统统没有连线时,只能在1楼编辑电梯的坐标,否则一律不能修改电梯的坐标,除非删除掉电梯在所有楼层的全部连线。
- ④ 非1楼的电梯节点是灰色的,统统不可编辑,只能连线。

3.3 画布

3.3.1 楼层

1 2 3 ×

3.3.2 居中画布

点击"居中画布",会使画布坐标系的(0,0)点位于画布左下角。

3.3.3 居中路网

点击"居中路网",会使路网中的所有节点都能完整地居中呈现在画布中。

3.3.4 路网

上海宾通 BITO ROBOTICS

01. 缩放/扩大画布

通过鼠标滚轮实现此操作。

02. 拖动画布

右击画布空白处拖动画布。

03. 单选节点

单击节点即可选中当前节点。

04. 多选节点

1) Ctrl +单击, 可多选节点

2) 单击画布空白处,不要松开鼠标,然后拖动鼠标,可框选多个节点。

05. 右击节点

1) 生成逻辑库位

名称		
名称	8	
Z		
0		

① 名称:不能为空;只能输入大写字母和数字,且必须以字母开头;全局唯一。

- 2 Z:不能为空,默认为 0,范围为[0,9999]之间的数值,且小数位只能有 2 位; 同一个节点上的所有逻辑库位的 Z 值不能相同。
- 2) 删除节点

删除画布中被选中的所有节点。

3) 取消

关闭右击弹框,不做其它任何操作。

06. 拖拽节点

单击某个被选中的节点后鼠标不松开,然后移动鼠标,可拖拽节点至画布中的任意位置。

07. 单选线段

单击线段即可选中当前线段,且线段两端会出现红色的可拖拽点用于修改线段的起点 或终点。

08. 拖拽线段

单击线段后线段两端会出现红色的可拖拽点,拖拽起点处的红色圈圈至其它节点(除 终点外)后放开鼠标,可修改线段的起点;拖拽终点处的红色圈圈至其它节点(除起 点外)后放开鼠标,可修改线段的终点。

如果红色的拖拽点在拖拽后没有被落位到合适的节点上,则线段会反弹回原来的位置。

09. 多选线段

Ctrl +单击, 可多选线段。

10. 右击线段

1) 切换另一条边

当右击的线段处存在双向线段时,可使用此功能来切换两条重叠线段的层级关系,以 便对它们分别进行其它操作。

2) 删除边

删除当前被选中的所有线段。

3) 取消

关闭右击弹框,不做其它任何操作。

3.4 右侧编辑栏

3.4.1 编辑节点属性

	Node ID 5	10		
	20.261	12.651		0
	逻辑库位	名称	Ζ	删除

单击选中某个节点,编辑栏会显示节点的 ID、坐标 (x, y)、角度 (θ),其中坐标 和角度可编辑。

3.4.2 编辑逻辑库位列表

01. 逻辑库位:单击该列下面的眼睛图标,可用来显示或隐藏画布中的逻辑库位。02. 名称:

- 1) 不能为空;
- 2) 只能输入大写字母和数字,且必须以字母开头;
- 3) 全局唯一。
- 03.Z:
- 1) 不能为空;
- 2) 默认为 0;
- 3) 范围为[0, 9999]之间的数值, 且小数位只能有 2 位;
- 4) 同一个节点上的所有逻辑库位的 Z 值不能相同。

04. 删除:

删除当前行的逻辑库位。

3.4.3 编辑线段属性

编辑线段属性		
起点	目标	
代价	速度(m/s)	

01. 起点: 线段起点, 不能为空, 值为路网中某个节点的 ID, 为正整数。

02. 目标: 线段终点, 不能为空, 值为路网中某个节点的 ID, 为正整数。

03. 代价(指行径的难度):不能为空,默认为0,范围为[0,9999]的整数。

04. 速度(m/s): 默认为空,代表不限速;非空时,速度范围为[0.01, 5.00]之间的数 值,小数位长度为 2 位。

3.4.4 平移路网

1	/

- 01. X:水平方向平移路网的距离。范围为[-9999, 9999]之间的数值,小数位最大长度为2位。
- 02. Y: 垂直方向平移路网的距离。范围为[-9999, 9999]之间的数值, 小数位最大长 度为 2 位。

3.4.5 旋转路网

旋转路网			
旋转点 x	旋转点y	旋转 0	

- 01. 旋转点 X: 旋转点的 X 坐标值。
- 02. 旋转点 Y: 旋转点的 Y坐标值。
- 03. 旋转 θ: 以旋转点为原点时旋转路网的角度。

3.4.6 删除当前楼层中的所有逻辑库位(除电梯)

删除当前楼层中的所有逻辑库位(除电梯)

该操作针对的是当前楼层中的所有逻辑库位。如果删除的是普通节点上的逻辑库位,则正常删除逻辑库位即可;如果删除的是料架或充电桩上面的逻辑库位,则删除逻辑 库位后将这些节点变身成为普通节点。

4 任务管理

任务管理在监控主页面。

4.1 新建任务

上海宾通 BITO ROBOTICS

J			k	
新建任务				×
*起点	起点			~
*终点	终点			~
起点动作	空白			~
终点动作	空白			~
预指派	预指派			~
* 重复次数	1			
优先级	〇 1(低) 🧕 2(中等)	〇 3(高)	0 4(紧急)	
				_
			取消 确	定

新建任务的方式有两种:

第一种:监控页面,右击路网中的节点,弹出新建任务的弹框,填写相应信息点击确 定即可下发。

第二种:任务页面,通过"新建任务"的按钮打开下发任务的弹框,填写相应信息点 击确定即可下发。

4.1.1 新建普通任务的规则

- 01. 对起点和终点进行可达性检测, 若不可达, 则无法下发任务。
- 02. 普通任务的起点动作(start_action)和终点动作(goal_action)都不能是充电 动作。
- 03. 优先级默认为"2(中等)"。
- 04. 重复次数范围: [1, 2000]之间的正整数
- 05. 未执行任务数量限制最多 2000 条, 超过 2000 条的任务将新建失败。(举例:若 任务列表中已有未执行任务 1999 条, 新建 3 条任务, 3 条任务均新建失败)

4.1.2 新建充电任务的规则

01. 对起点和终点进行可达性检测, 若不可达, 则无法下发任务。

BITO

02. 充电节点只能下发充电任务,非充电节点不能下发充电任务。

03. 充电任务必须指定预分配机器人。

04. 充电任务的起点(start)和终点(goal)必须一致。

- 05. 充电任务的起点动作(start_action)必须是"空白"(key: 0)。
- 06. 充电任务的优先级默认选中最高优先级, 可由用户手动调整

07. 充电任务的重复次数只能为 1。

08. 下发充电任务前,要先检测目标逻辑库位(goal)的充电桩是否已经被分配充电任务,如果已被分配,虽然允许继续下发该充电任务,但是得提示用户:该充电桩已被预分配,若继续下发,将等待,是否继续?

09. 纯自动充电模式下,不能手动添加充电任务。

4.2 重复

ID	起点	起点动作	终点	终点动作	预指派	优先级
329	P101	空白	P101	空白	预指派 ~	2(中等) ~
328	P61	空白	P61	空白	yg00virt1907 \vee	1(低) ~
327	P41	空白	P41	空白	yg00virt1907 ∨	1(低) ~
326	P61	空白	P61	空白	yg00virt1907 ∨	1(低)
	重复次数	1 顾序循环 〇	单任务循环			

01. 在任务列表中选中要重复的任务,然后点击"重复"按钮,弹出重复任务的弹框。02. 弹框中会显示所有被选中的任务,这些任务可以被修改"预指派"和"优先级"。03. 充电任务不可以被重复。

04. 重复方式, 默认为顺序循环。

1) 顺序循环

2) 单任务循环

BITO

- 05. 机器人不在线时,任务依然可以被重复,重复任务时,请务必保证任务下发的安全性。
- 06. 重复任务的结果集会在弹框中以表格的形式展现出来。

4.3 取消任务

提示		\times
🕕 确认取消该任务吗?		
	取消	确定

01. 在任务列表中选中要取消的任务, 然后才能点击"取消"按钮。

02. 取消充电任务时需调用打断接口。

03. 取消任务的结果集会在弹框中以表格的形式展现出来。

4.4 任务状态

BITO ROBOTICS

任务动作	英文
已创建	CREATED
已预订	SCHEDULED
已执行	EXECUTING
已完成	DONE
已中止	ABORTED
已取消	CANCELLED
移动至起点	MOVE_TO_START
执行开始操作	DO_START_ACTION
移动至终点	MOVE_TO_GOAL
执行结束操作	DO_GOAL_ACTION
回家	MOVE_TO_HOME
新建	NEW
已存档	ARCHIVED
无效	INVALID

4.5 任务动作

任务动作是指机器人在某一任务中的起点或终点,所执行的动作。

BITO

上海宾通 BITO ROBOTICS

任务动作	英文
空白	BLANK
前进举升	STRAIGHT UP
前进下降	STRAIGHT DOWN
原地举升	PURE UP
原地下降	PURE DOWN
充电	CHARGE
向后退举升	BACK UP
向后退下降	BACK DOWN

5 机器人管理

A 全部连接 A 全	部断开													 全部继续 金部準续
序列号 ⇔	名称 💠	秋恣 ≑	操作	电量	定位	伯服	雷达	二维码	底盘	相机	CPU	内存	任务10	启停
yg00virt19072214000n03	yg03 Ø_	•	连接	98%	×	\checkmark	×	×	×	×	0.00%	0.00%		
yg00virt19072214000n01	Y301 02	•	连接	98%	×	\checkmark	×	×	×	×	0.00%	0.00%		
yg00virt19072214000n02	YG02 0_	•	法报	98%	×	\checkmark	×	×	×	×	0.00%	0.00%		
yg00virt19072214000n00	yg00 Ø_	•	连接	98%	×	\checkmark	×	×	×	×	0.00%	0.00%		
yg00virt19072214000n04	yg04 🖉	•	注版	98%	×	\checkmark	×	×	×	×	0.00%	0.00%		

当韩信开启时,机器人列表中会显示机器人的完整信息。当韩信关闭时,将不会显示机器人信息。

5.1 机器人状态

5.1.1 离线

机器人未连接时将处于离线状态,此时,状态列显示一个灰色的圆圈 ,且当鼠标 悬浮至此时,提示"离线"。

5.1.2 在线

上海宾通 BITO ROBOTICS

机器人连接时将处于在线状态,且当一切正常时,状态列显示一个绿色的圆圈 🤜, 且当鼠标悬浮至此时,提示"在线"。

如果机器人故障了,则显示一个警告图标 ——,且当鼠标悬浮至此时,提示"在线,故障"。

如果机器人存在,但是断电等原因导致机器人无法上报相应的数据,则显示一个问号

图标 ²², 且当鼠标悬浮至此时, 提示"已上线, 但未发现该机器人"。

5.2 伺服

下列表格中的绿色代表伺服状态正常,红色代表伺服状态异常。

伺服状态	DTC	状态说明
0	B0PL000000	插取货架节点正常
1	B0PL000001	开始识别
2	B0PL000002	开始识别
3	B0PL000003	机器人在线
4	B0PL000004	机器人定位已定位
5	B0PL000005	收到伺服动作请求
6	B0PL000006	伺服中
7	B0PL000007	伺服到位
8	B0PL000008	放置货架
9	B0PL000009	对接中
10	B0PL000010	完成取货动作

BITO

上海宾通 BITO ROBOTICS

11	B0PL000011	标定中
12	B0PL000012	取货退出
13	B0PL000013	充电中
14	B0PL000014	充电完成
10000	B0PL010000	伺服异常
10001	B0PL010001	货架识别超出置信区间
10002	B0PL010002	未识别到全部四个腿
10003	B0PL010003	伺服暂停中
10004	B0PL010004	检测到障碍物
10005	B0PL010005	伺服异常
10006	B0PL010006	物体识别分数低
10007	B0PL010007	物体识别有跳变
10009	B0PL010009	物体识别点云数量不足
10010	B0PL010010	物体识别超过最大迭代次数
	B0PL020000	伺服节点异常

5.3 定位

下列表格中的绿色代表定位状态正常, 红色代表定位状态异常。

定位状态	DTC	状态说明
1	B0LZ000001	定位正常
2	B0LZ010000	(二维码定位)长时间二维码丢失

上海宾通 BITO ROBOTICS

5	B0LZ010001	(二维码定位)融合定位置信度低
4	B0LZ010002	(二维码定位)相机定位与融合定位偏差大
3	B0LZ010003	(二维码定位)相机定位超时
6	B0LZ020000	无定位发布

5.4 操作

5.4.1 连接

离线状态的机器人,可以点击"连接"按钮用于上线机器人。

5.4.2 断开

在线状态的机器人,可以点击"断开"按钮用于下线机器人。

5.4.3 全部连接

一次性上线所有处于离线状态的机器人。

5.4.4 全部断开

一次性下线所有处于在线状态的机器人。

5.4.5 暂停

运行状态的机器人,可以点击"暂停"按钮使其暂停运行。

5.4.6 恢复

暂停状态的机器人,可以点击"恢复"按钮使其重新运行。

5.4.7 全部继续

一次性恢复所有处于暂停状态的机器人。

5.4.8 全部暂停

一次性暂停所有处于运行状态的机器人。

6 故障码

关闭	故障时间	开始日期 至	结束日期	故障码 故障码	可否目恢复全部	~ 故障等级	全部 ~	重量		漏除已关闭
	ID \$	故障码 ⇔	机器人	故摩描述	处理建议	故障等级 💠	可否自恢复	故障时间 💠	解决时间	状态
	213	B0HX020001	YG02	注册机器人禽交通路网节点	请将机器人筹装到路网节点	20	香	2020-09-02 16:44:17		未关闭
		B0HX020001	YG02	注册机器人篇交通路网节点	请将机器人驾驶到路网节点	20	*	2020-09-02 16:09:09		未关闭
	211	B0HX020001	YG02	注册机器人需交通路网节点	请将机器人驾驶到路网节点	20	ā	2020-09-02 16:08:52		未关闭

用于展示系统中所有的故障信息。

关闭:关闭故障,意味着该故障已被解决。

清除已关闭:清除

在此页面, 可以看到机器人在路网上的运行实况, 并对显示效果做选择。

7.1 路网名称

场域的左上角会显示当前被导入的路网的名称。

7.2 居中画布/路网/机器人

为了快速定位路网,可以通过画布右上角的快捷按钮,快速选择居中画布、居中路网、 居中全部机器人,同时,也可以在左侧机器人列表中,单击某台机器人,快速聚焦该 机器人。

7.3 展示/隐藏计划路径

在路网上可以快速查看调度系统为机器人规划的路径。

BITO

7.4 贝塞尔曲线/直线

可以选择显示的路径是直线或是贝塞尔曲线,不同机器人的运动控制不同,具体行驶路径以机器人实际行径为准。

7.5 隐藏/显示逻辑点

隐藏或显示路网中的逻辑库位。

8 配置

8.1 主题&LOGO

这里可以更换整个网页的主题色和页面 LOGO。

切換 Logo

8.1.1 切换主题

切换主题			~
	#f1bf4e 恢复默认	恢复默认	#303133 恢复默认
	主题色	页头背景色	页头文本色

8.1.2 切换 LOGO

